News Picture Generic

Thermo-responsive polymer catalysts for polyester recycling processes: switching from homogeneous catalysis to heterogeneous separations

August 12, 2025
Featured Article

Polymer Chemistry

Inspired by the endless versatility offered by functional polymer materials in terms of modulating and imprinting diverse chemical, physical, and/or biological properties, we developed and screened a family of polymer catalysts, combining highly efficient catalytic functional groups with stimuli-responsive properties, to bring together the advantages of homogeneous catalysis and heterogeneous separation processes in a single catalytic system. We demonstrate that different degrees of anion exchange in (co)polymers based on chlorozincate poly(ionic liquid)s lead to anion speciation effects that play an important role in modulating the physical properties of these materials and in enabling reversible thermal transitions in solution (i.e., upper critical solution temperature (UCST) behavior in glycolic solvents). Thus, the intrinsic properties of these functional materials supported the homogeneous depolymerization of post-consumer poly(ethylene terephthalate) (PET), through catalyzed glycolysis, to achieve high conversion (>91%) and product selectivity (>90%). Subsequently, taking advantage of the thermo-responsive properties (i.e., UCST behavior) of these (co)polymer catalysts, we switch the reaction system from a homogeneous to a heterogeneous state to potentially enable catalyst recovery and/or reuse for further depolymerization cycles without a detriment of catalytic activity. Hence, this work demonstrates the great potential of integrating both stimuli-responsive and catalytic properties into polymer materials to develop programmable catalysts for overcoming current limitations of homogeneous and heterogeneous catalysts in industrially relevant chemical processes. Particularly, this approach contributes to closing the loop toward developing fully circular materials and processes for the chemical recycling of PET.

For details:

Thermo-responsive polymer catalysts for polyester recycling processes: switching from homogeneous catalysis to heterogeneous separations

Víctor D. Lechuga-Islas a,b, Dulce M. Sánchez-Cerrillo a, Steffi Stumpf a,c, Ramiro Guerrero-Santos b, Ulrich S. Schubert a,c, Carlos Guerrero-Sánchez a,c

a. Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

Chemspeed Technologies AG

Chemspeed is a global team committed to enable automated and digitalized workflows for scientists in R&D and QC.

© Chemspeed Technologies 2025