A semi-automated material exploration scheme to predict the solubilities of tetraphenylporphyrin derivatives

March 28, 2023

Nature - Communications Chemistry

Acceleration of material discovery has been tackled by informatics and laboratory automation. Here we show a semi-automated material exploration scheme to modelize the solubility of tetraphenylporphyrin derivatives. The scheme involved the following steps: definition of a practical chemical search space, prioritization of molecules in the space using an extended algorithm for submodular function maximization without requiring biased variable selection or pre-existing data, synthesis & automated measurement, and machine-learning model estimation. The optimal evaluation order selected using the algorithm covered several similar molecules (32% of all targeted molecules, whereas that obtained by random sampling and uncertainty sampling was ~7% and ~4%, respectively) with a small number of evaluations (10 molecules: 0.13% of all targeted molecules). The derived binary classification models predicted ‘good solvents’ with an accuracy >0.8. Overall, we confirmed the effectivity of the proposed semi-automated scheme in early-stage material search projects for accelerating a wider range of material research.

For details:

A semi-automated material exploration scheme to predict the solubilities of tetraphenylporphyrin derivatives

Raku Shirasawa 1, Ichiro Takemura 2, Shinnosuke Hattori 1 & Yuuya Nagata 3

1. Advanced Research Laboratory, R&D Center, Sony Group Corporation, Atsugi Tec. 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa, 243-0014, Japan

2. Tokyo Laboratory 26, R&D Center, Sony Group Corporation, Atsugi Tec. 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa, 243-0014, Japan

3. Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan

Communications Chemistry
Volume 5, article number: 158 (2022)
https://doi.org/10.1038/s42004-022-00770-9

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

Chemspeed Technologies AG

Chemspeed is a global team committed to enable automated and digitalized workflows for scientists in R&D and QC.

© Chemspeed Technologies 2025