News Picture Generic

Automated screening of precipitation polymerizations and evaluation using image recognition for divinylbenzene and methacrylic acid

December 17, 2024
Featured Article

Applied Polymer Science

By applying automated high-throughput experimentation, 63 precipitation polymerizations of divinylbenzene and methacrylic acid were performed with a total of 1638 samples analyzed by gas chromatography (GC), nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). The conversion of each reaction was investigated revealing the best substrate concentrations within the current setup. The GC evaluation was performed automatically via a new custom-made Python script significantly reducing the time to evaluate the results. Furthermore, the particle growth was monitored by utilizing an innovative image recognition tool to identify particles and their respective sizes using SEM images. Furthermore, a statistical particle size distribution analysis was performed, which is hardly achiev-able in reasonable time by classical evaluation methods. Using this new procedure, the highest conversion (70%) as well as the largest particles (3700 nm) have been obtained utilizing a high initial monomer (5 vol%) and initiator (5 mol%) concentration. Accordingly, the smallest particles (245 nm) yielded from the lowest starting concentration (1 vol% monomer and 1 mol%initiator).

For details

Timo Schuett 1,2, Patrick Endres 1,2, Julian Kimmig 1,2, Robert Lorenz 1,2, Yannik Köster 1,2, Steffi Stumpf 1,2, Stefan Zechel 1,2, Ulrich S. Schubert 1,2,3

1 Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany

2 Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany

3 Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena, Germany

DOI: https://doi.org/10.1002/app.55985

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026