News Picture Generic

Characterization of Particle-Size-Based Homogeneity and Mycotoxin Distribution Using Laser Diffraction Particle Size Analysis

October 3, 2023

Toxins

Sample homogeneity dictates whether analyzing a test portion of an entire sample can provide representative information about incurred mycotoxins. In this study, we evaluated particle-size-distribution-based homogeneity of laboratory mycotoxin samples using laser diffraction particle size analysis and International Organization for Standardization (ISO) Guide 35: 2017. Incurred whole corn, compound feed, peanut butter, and wheat flour (500 g each) were comminuted using wet, cryogenic, or dry milling. We used a sample dividing (riffling) device to obtain representative subsamples (25 g each) and developed a laser diffraction particle size analysis procedure by optimizing key parameters such as the refractive index, absorption, and stirring rate. The homogeneity of the particle size distribution within laboratory subsamples was characterized using the optimized laser diffraction procedure. An assessment of homogeneity was also performed for individual mycotoxins in each incurred matrix sample following the procedure described in ISO Guide 35. The concentrations of the incurred mycotoxins were determined using liquid chromatography–mass spectrometry (LC-MS). Within- and between-subsample variances of incurred aflatoxin B1 in peanut butter; deoxynivalenol in corn, compound feed, and wheat flour; and fumonisins in compound feed corroborated that when the particle size measurements were less than 850 µm, mycotoxins concentrations were consistent across independent test portions, which was confirmed using an analysis of variance (F-test). This study highlights the benefits of laser diffraction particle size analysis and suggests its use as a test procedure to evaluate homogeneity in new sample commodities.

For details

Characterization of particle-size-based homogeneity and mycotoxin distribution using laser diffraction particle size analysis

Kai Zhang, Ivy Tran and Steven Tan

Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA

DOI: https://doi.org/10.3390/toxins15070450

For more information about the used Chemspeed solutions:

SWING SP

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Feb
17

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Feb
10

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

© Chemspeed Technologies 2026