News Picture Generic

Data-Driven Analysis of High-Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity

September 5, 2023
Featured Article

Chemistry Methods

A specially designed high-throughput experimentation facility, used for the highly effective exploration of electrolyte formulations in composition space for diverse battery chemistries and targeted applications, is presented. It follows a high-throughput formulation-characterization-optimization chain based on a set of previously established electrolyte-related requirements. Here, the facility is used to acquire large dataset of ionic conductivities of non-aqueous battery electrolytes in the conducting salt-solvent/co-solvent-additive composition space. The measured temperature dependence is mapped on three generalized Arrhenius parameters, including deviations from simple activated dynamics. This reduced dataset is thereafter analyzed by a scalable data-driven workflow, based on linear and Gaussian process regression, providing detailed information about the compositional dependence of the conductivity. Complete insensitivity to the addition of electrolyte additives for otherwise constant molar composition is observed. Quantitative dependencies, for example, on the temperature-dependent conducting salt content for optimum conductivity are provided and discussed in light of physical properties such as viscosity and ion association effects.

For details

Data-driven analysis of high-throughput experiments on liquid battery electrolyte formulations: Unraveling the impact of composition on conductivity

Dr. Anand Narayanan Krishnamoorthy 1, Dr. Christian Wölke 1, Dr. Diddo Diddens 1, Dr. Moumita Maiti 2, Youssef Mabrouk 1, Peng Yan 1, Dr. Mariano Grünebaum 1, Prof. Dr. Martin Winter, Prof. Dr. Andreas Heuer 1,3, Dr. Isidora Cekic-Laskovic 1

1. Helmholtz-Institute Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany

2. Institute of Physical Chemistry, University of Münster, Corrensstrasse 28/30, 48149 Münster, Germany

3. MEET Battery Research Center, University of Münster, Corrensstrasse 46, 48149 Münster, Germany

DOI: https://doi.org/10.26434/chemrxiv-2022-vbl5d

For more information about the used Chemspeed solutions:

SWING SP

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026