News Picture Generic

Data-Driven Analysis of High-Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity

September 5, 2023
Featured Article

Chemistry Methods

A specially designed high-throughput experimentation facility, used for the highly effective exploration of electrolyte formulations in composition space for diverse battery chemistries and targeted applications, is presented. It follows a high-throughput formulation-characterization-optimization chain based on a set of previously established electrolyte-related requirements. Here, the facility is used to acquire large dataset of ionic conductivities of non-aqueous battery electrolytes in the conducting salt-solvent/co-solvent-additive composition space. The measured temperature dependence is mapped on three generalized Arrhenius parameters, including deviations from simple activated dynamics. This reduced dataset is thereafter analyzed by a scalable data-driven workflow, based on linear and Gaussian process regression, providing detailed information about the compositional dependence of the conductivity. Complete insensitivity to the addition of electrolyte additives for otherwise constant molar composition is observed. Quantitative dependencies, for example, on the temperature-dependent conducting salt content for optimum conductivity are provided and discussed in light of physical properties such as viscosity and ion association effects.

For details

Data-driven analysis of high-throughput experiments on liquid battery electrolyte formulations: Unraveling the impact of composition on conductivity

Dr. Anand Narayanan Krishnamoorthy 1, Dr. Christian Wölke 1, Dr. Diddo Diddens 1, Dr. Moumita Maiti 2, Youssef Mabrouk 1, Peng Yan 1, Dr. Mariano Grünebaum 1, Prof. Dr. Martin Winter, Prof. Dr. Andreas Heuer 1,3, Dr. Isidora Cekic-Laskovic 1

1. Helmholtz-Institute Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany

2. Institute of Physical Chemistry, University of Münster, Corrensstrasse 28/30, 48149 Münster, Germany

3. MEET Battery Research Center, University of Münster, Corrensstrasse 46, 48149 Münster, Germany

DOI: https://doi.org/10.26434/chemrxiv-2022-vbl5d

For more information about the used Chemspeed solutions:

SWING SP

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025