News Picture Generic

GLAS: An open-source easily expandable Git-based Scheduling Architecture for Integral Lab Automation

December 24, 2024

ChemRxiv

This paper presents GLAS (Git-based Lab Automated Scheduler or Get Lab Automation Simplified), an open-source, robust, and highly expandable Git-based architecture designed for laboratory automation. GLAS can be deployed in both partially and fully automated experimental science laboratories, enabling the development of a multi-layer scheduling system while maintaining a systematic architecture grounded in a Git repository. We demonstrate the effectiveness of GLAS through case studies from the Swiss Cat+ automated chemistry laboratory, showcasing its versatility and potential for widespread applicability in various laboratory automation contexts. By offering an open-source scheduling environment, our aim is to foster the development of accessible and adaptable laboratory automation solutions within the scientific community.

For details

Jean-Charles Cousty a, Tanguy Cavagna b, Alec Schmidt b, Edy Mariano a, Keyan Villat a, and Pascal Miéville a

a. Swiss Cat+ West Hub, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland

b. Département Informatique et systèmes de communication, Haute école du paysage, d'ingénierie et d'architecture HEPIA, 1202 Geneva, Switzerland

DOI: https://chemrxiv.org/engage/chemrxiv/article-details/668fe32ec9c6a5c07af92c00

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

Chemspeed Technologies AG

Chemspeed is a global team committed to enable automated and digitalized workflows for scientists in R&D and QC.

© Chemspeed Technologies 2025