News Picture Generic

Harnessing the Power of C-H Functionalization Chemistry to Accelerate Drug Discovery

March 5, 2024
Featured Article

Synlett

The field of C-H functionalization chemistry has experienced rapid growth in the past twenty years, with increasingly powerful applications in organic synthesis. Recognizing the potential of this emerging field to impact drug discovery, a dedicated effort was established in our laboratories more than ten years ago with a goal of facilitating the application of C-H functionalization chemistries to active medicinal chemistry programs. Our approach centered around the strategy of Late-Stage Functionalization (LSF) wherein C−H functionalization chemistry is employed in a systematic and targeted manner to generate high-value analogs from advanced drug leads. To successfully realize this approach, we developed broadly useful LSF chemistry platforms and workflows that increased the success rates of the C- H functionalization chemistries and accelerated access to new derivatives. The LSF strategy, when properly applied, enabled rapid synthesis of molecules designed to address specific medicinal chemistry issues. Several case studies are presented along with descriptions of the group’s platforms and workflows.

For details

Harnessing the Power of C-H Functionalization Chemistry to Accelerate Drug Discovery

Bing Li a, Sriram Tyagarajan a, Kevin D. Dykstra a, Tim Cernak b, Petr Vachal a, Shane W. Krska a

a. Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA

b. Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA

For more information about the used Chemspeed solutions:

FLEX ISYNTH

ISYNTH

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025