News Picture Generic

Multiblock copolymer synthesis via RAFT emulsion polymerization

August 11, 2023
Featured Article

Chemical Society Reviews

A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the “holy grail” of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a “perfect” structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure–property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition–fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.

For details:

Multiblock copolymer synthesis via RAFT emulsion polymerization

Glenn K.K. Clothier a, Thiago R. Guimarães b, Steven W. Thompson a, Julia Y. Rho c, Sébastien Perrier c d e,  Graeme Moad f and Per B. Zetterlund a 

a. Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
b. MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
c. Warwick Medical School, University of Warwick, Coventry, UK
d. Department of Chemistry, University of Warwick, Coventry, UK
e. Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
f. CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia

DOI: https://doi.org/10.1039/D2CS00115B

For more information about the used Chemspeed solutions:

ISYNTH

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Feb
10

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

Read more about Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage
News Picture 1 1 V2
Featured
Jan
30

Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage

VDI news / nachrichten

Up to 220 paint samples per day go through a fully automated screening in a unique testing facility at Byk in Wesel. / Bis zu 220 Lackproben pro Tag durchlaufen ein vollautomatisches Screening in einer weltweit einmaligen Pruefanlage bei Byk in Wesel.

© Chemspeed Technologies 2026