News Picture Generic

Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis

October 5, 2015

Fargo, USA Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production with Chemspeed’s Fully Automated AUTOPLANT PRORES “There is a growing need to produce epoxidized sucrose soyate (ESS) at an industrial scale for large-scale applications in coatings and material science. Industrial scale production of ESS requires optimization of the process conditions to minimize cost without compromising resin quality. Therefore, a robust model was developed that predicts the conversion of double bonds to oxirane under different process scenarios. Data for the model were obtained by epoxidizing 30 g batches of sucrose soyate at three reactor temperatures (55, 60, and 65 °C), three molar ratios of acetic acid to oil unsaturation (0.25:1, 0.375:1, and 0.5:1), three molar ratios of H2O2 to oil unsaturation (1:1, 1.5:1, and 2:1), three catalyst amounts (1.5, 3.75, and 6 g), and three reaction times (3.5, 4.5, and 5.5 h). The model was highly significant with an adjusted R2 of 97.6% and predicted R2 of 96.8%. The root-mean-square errors (RMSE) of 0.54 showed that the model was a good fit in predicting optimal epoxidation conditions at different process levels. ESS samples epoxidized at 60–65 °C for 4.5–5 h had conversion greater than 98% even when reagent amounts were reduced by 18–20%. A similar resin quality was also attained when one of the optimal conditions was scaled-up 100 fold to a 3 kg batch. Therefore, this model can be used to determine appropriate processing conditions for epoxidizing vegetable oil-based compounds at any scale with sufficient mixing and temperature control.”    For details:

Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production

Ewumbua M. Monono, James A. Bahr, Scott W. Pryor, Dean C. Webster§, Dennis P. Wiesenborn †Department of Agricultural and Biosystems Engineering, ‡The Center for Nanoscale Science and Engineering, and §Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States Org. Process Res. Dev., DOI: 10.1021/acs.oprd.5b00251

Other Recent News

Discover more news articles you might be interested in

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Feb
17

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Feb
10

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

© Chemspeed Technologies 2026