News Picture Generic

Role of catalyst shape and reactor performance for relating the catalytic activity and the chemical structure of active sites for emission control catalysis

April 1, 2025

ChemRxiv

Packed powder beds and coatings are two relevant forms of catalysts, applied in industrial heterogeneous catalysis. Both types have their individual advantages and disadvantages in regard to the performance and characterisation causing some complexity in the resulting flow patterns, possible temperature inhomogenities in the reactor and the dynamic evolution of chemical state of the noble metal during the reaction along the catalytic bed. The well-known CO oxidation reaction over Pt/Al2O3 catalysts was used in this study to uncover the influence of the gas phase compositions, the influence of the temperature and the evolution of the electronic structure of Pt for powdered and coated catalysts at comparable length scales. Advanced operando investigations were used to demonstrate the influence of spatial gradients in the gas phase for washcoatings in contrast to packed powder beds. Additionally, transient gradients in the chemical state of Pt, which occurred more pronounced for packed powder beds than for coated monoliths were followed and traced back to heat and mass transfer effects. Finally, the catalytic activity can be linked to the temperature distributions for both types of samples. These findings will be valuable for planning and evaluating future combinations of spectroscopic and catalytic experiments on industrially relevant systems.

For details

Samuel Struzek, Tim Delrieux, Florian Maurer, Danielle Santos Goncalves, Sarina-Lena Heck, Linda Klag , Joachim Czechowsky, Anna Zimina & Jan-Dierk Grunwaldt 

Karlsruhe Institute of Technology

DOI: https://chemrxiv.org/engage/chemrxiv/article-details/6654e30d21291e5d1d6ac1bc

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025