News Picture Generic

The Laboratory of Molecular Simulation (LSMO) at EPFL has selected Chemspeed Technologies’ ISYNTH SWAVE Automated Workstation in order to accelerate their research work in discovering novel nanoporous materials

January 23, 2018

January 2018 - The Laboratory of Molecular Simulation (LSMO) at EPFL Valais Wallis

“The Laboratory of Molecular Simulation (LSMO) at EPFL has selected Chemspeed Technologies in order to accelerate their research work in discovering novel nanoporous materials. The overarching goal of this project is to identify a ‘wonder’ material that can outperform existing materials reported and available in the market for energy, environmental and sensing applications!

High-throughput methods represent a very promising approach for accelerating the discovery of metal-organic frameworks (MOFs) as a large number of automated and integrated reactions can be prepared in one batch by screening a wide variety of parameters: metal source and solvent mixtures, concentrations, ratio between the metal and ligand, pH of the reaction, heating temperature, time and others. The utilization of RoSy (Robotic Synthesiser ISYNTH SWAVE) at EPFL Valais Wallis is an ideal tool for the discovery of new materials as it allows the LSMO researchers to run a series of 50 (or more) simultaneous experiments for the synthesis of MOFs (automated dispensing of solids – ligands, metal salts and liquids with high quality; automated capping and crimping of the reaction vials without manual interference; microwave heating; confirmation of the product formation with the integrated camera). The experimental results (successful and failed) are then utilized to rank each synthetic reaction with the Genetic Algorithms (GAs) – an approach that the computational scientists in LSMO have developed. After this ranking, a set of new synthetic conditions is generated and run experimentally using RoSy. This can lead in multiple generations of MOFs (set of 50 reactions) and it continues until the best conditions are identified. Recent advances from this research activity include the discovery of new MOFs and the optimisation of the synthetic conditions for the synthesis of stable, originally reported as unstable MOFs. Additionally by establishing this robust iterative method, the design and synthesis of specific MOF for the capture / storage of strategically critical gases (CH4, CO2, H2) can be achieved!”

For more information about the capabilities of RoSy and possible collaborations, please contact Kyriakos C. Stylianou at [email protected].

For more information about the solution applied:

 

About LSMO at EPFL Valais

https://lsmo.epfl.ch

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026