News Picture Generic

University of Liverpool, Centre for Materials Discovery, condenses 6 years of work into 1 thanks to Chemspeed

October 7, 2011

After implementing multiple Chemspeed platforms for various kinds of cutting edge materials research over the past 5 years, Prof. Andrew Cooper says: "I believe we did the equivalent of 6 years work in about 1 year. This is a huge competitive advantage - we could not imagine how to do our work without Chemspeed automation anymore." Chemspeed is proud to count Prof. Andrew Cooper and his team in his customer base. It is this kind of customer support that motivates our team to go even further. The University of Liverpool is a member of the Russell Group of leading research intensive institutions in the UK. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £110 million annually. If you are interested in understanding how Chemspeed can help you gain this kind of efficiency in your R&D please do not hesitate to contact us.

About University of Liverpool Founded in 1881, the University of Liverpool has an impressive history of pioneering education and research, with a particular emphasis on 'education for the professions'. The University produces industry-ready graduates. Today they are a principal centre of excellence in many disciplines, including engineering, medicine, dentistry, business and law. As one of the UK’s top 20 research-led universities, they are furthering knowledge with strategic partners worldwide and they intend to double our £123m pa research budget by 2015. Education creates opportunity. They are proud to be one of the UK’s most inclusive universities, welcoming students from a wide variety of backgrounds and from over 100 countries of the world. Additional information

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025