News Picture Generic

Automated Intelligent Platforms for High‐Throughput Chemical Synthesis

July 9, 2024

Artificial Intelligence Chemistry

Automation and high-throughput techniques provide a solid technical foundation for realizing the deep fusion of artificial intelligence and chemistry as well as the full utilization of their advantages. In recent years, with the unique advantages of low consumption, low risk, high efficiency, high reproducibility, high flexibility and good versatility, intelligent automated platforms for high-throughput chemical synthesis aroused widespread concerns of synthetic chemists. In this review, the automated high-throughput chemical synthesis, automated high-throughput sample treatment and characterization technique, as well as the application of artificial intelligence technique in chemical synthesis are introduced. The characteristics of the systems and platforms based on these techniques, including the iChemFoundry platform developed in the ZJU-Hangzhou Global Scientific and Technological Innovation Center, are introduced. The intelligent automated platforms for high-throughput chemical synthesis will reshape the thinking mode of traditional disciplines, promote the innovation of disruptive techniques, redefine the rate of chemical synthesis, and innovate the way of material manufacturing.

For details

Automated Intelligent Platforms for High‐Throughput Chemical Synthesis

Jia-Min Lu a,b, Jian-Zhang Pan a,b, Yi-Ming Mo a,c, Qun Fang a,b

a. Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
b. Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
c. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China

DOI: https://doi.org/10.1016/j.aichem.2024.100057

For more information about the used Chemspeed solutions:

ISYNTH REACTSCREEN

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Feb
17

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Feb
10

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

© Chemspeed Technologies 2026