News Picture Generic

Exploration of the polymorphic solid-state landscape of an amide-linked organic cage using computation and automation

September 24, 2024
Featured Article

Organic Chemistry

Organic cages can possess complex, functionalised internal cavities that make them promising candidates for synthetic enzyme mimics. Conformationally flexible but chemically robust structures are needed for adaptable guest binding and catalysis, but these rapidly exchanging systems are difficult to resolve in solution. Here, we use inexpensive calculations and high-throughput crystallisation experiments to identify accessible cage conformations for a recently reported organic cage by ‘locking’ them in the solid state. The conformers identified exhibit a range of distances between the carboxylic acid groups in the internal cavity, suggesting adaptability towards binding a wide array of target guest molecules. The complexity of the observed crystal structures goes beyond what is possible with state-of-the-art crystal structure prediction.

For details

Exploration of the polymorphic solid-state landscape of an amide-linked organic cage using computation and automation

C. E. Shields a, T. Fellowes a, A. G. Slater a, A. I. Cooper a, K. G. Andrews b, F. T. Szczypiński a

a. University of Liverpool
b. Durham University

DOI: https://10.26434/chemrxiv-2024-6cwvw

For more information about the used Chemspeed solutions:

FLEX ISYNTH

ISYNTH

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

© Chemspeed Technologies 2025