News Picture Generic

High throughput experimentation - a boost for product development

September 22, 2017

September 2017 - Clariant, Frankfurt, Germany

“To help reduce the time to market for new products, Group Technology & Innovation has developed an advanced laboratory centered on high throughput experimentation (HTE) techniques. The lab provides accelerated synthesis, formulation, application and testing for all business units across the product landscape.

Accelerating the development of new products and reducing their time to market is a critical factor in Clariant’s success. Developing a product often requires multiple formulations and testing, making this process very labor-intensive and time-consuming.

To accelerate scientific research, Clariant has set up a central High Throughput Experimentation (HTE) laboratory at its Clariant Innovation Center (CIC) in Frankfurt-Hoechst, Germany. HTE uses automated instrumentation, specialized software tools, and alternative research techniques to increase the output of experimentation, application, and testing, all of which help improve the efficiency and productivity of the development process.“

Take a peek into the lab and learn more about how it can support Clariant’s businesses.
http://compact.clariant.com/en/Clariant-Compact/March-2017/High-Throughput-Experimentation

For more information about Chemspeed’s solutions:

{"style":"unordered","items":[{"content":"Sample Preparation (SWING)","items":[]},{"content":"Formulation (FORMAX)","items":[]},{"content":"Process Research and Optimization (MULTIPLANT PRORES)","items":[]}]}

 

About Clariant:

https://www.clariant.com/en/Company

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025