Macromolecules Journal

Combinatorial and high throughput (HTP) methodologies have long been used by the pharmaceutical industry to accelerate the rate of drug discovery. HTP techniques can also be applied in polymer chemistry to more efficiently elucidate structure–property relationships, to increase the speed of new material development, and to rapidly optimize polymerization conditions. Controlled living/radical polymerization (CLRP) is widely employed in the preparation of potential materials for bioapplications being suitable for a large variety of polymeric materials with various architectures. The versatility of CLRP makes it an ideal candidate for combinatorial and HTP approaches to research, and recently, the development of oxygen tolerant CLRP techniques has greatly simplified the methodology. In this Perspective, we provide an overview of conventional CLRP, including automated parallel synthesizers, as well as oxygen tolerant CLRP applications for HTP polymer research.

For more information about Chemspeed solutions:

ISYNTH

MULTIPLANT/AUTOPLANT POLY

Macromolecules, 2019, 52 (1), pp 3–23
https://pubs.acs.org/doi/10.1021/acs.macromol.8b01864
DOI: 10.1021/acs.macromol.8b01864
Publication Date (Web): December 27, 2018
Copyright © 2018 American Chemical Society

For details please contact [email protected]