News Picture Generic

Data science-driven autonomous reaction optimization by UBC, Merck Co., Inc. and Chemspeed

November 12, 2020

Data driven high-throughput experimentation is enabling accelerated screening within pharmaceutical companies. New data science tools combined with machine learning are being implemented to efficiently tackle multivariate reaction optimization challenges.

Melodie Christensen, from Merck & Co., Inc., and UBC provide an overview of the use of automation in her Data Rich Experimentation (DRE) lab and her move towards autonomous reaction screening in conjunction with digitalization.

Melodie is an Associate Principal Scientist, Merck & Co., Inc. and a Ph.D. student at the Department of Chemistry, the University of British Columbia.

She has a proven track record in high-throughput experimentation platforms to support early and late stage pharmaceutical process development.

Webinar

For more information about Chemspeed solutions:

SWING RP

FLEX ISYNTH

ISYNTH REACTSCREEN

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026