Toxins
Sample homogeneity dictates whether analyzing a test portion of an entire sample can provide representative information about incurred mycotoxins. In this study, we evaluated particle-size-distribution-based homogeneity of laboratory mycotoxin samples using laser diffraction particle size analysis and International Organization for Standardization (ISO) Guide 35: 2017. Incurred whole corn, compound feed, peanut butter, and wheat flour (500 g each) were comminuted using wet, cryogenic, or dry milling. We used a sample dividing (riffling) device to obtain representative subsamples (25 g each) and developed a laser diffraction particle size analysis procedure by optimizing key parameters such as the refractive index, absorption, and stirring rate. The homogeneity of the particle size distribution within laboratory subsamples was characterized using the optimized laser diffraction procedure. An assessment of homogeneity was also performed for individual mycotoxins in each incurred matrix sample following the procedure described in ISO Guide 35. The concentrations of the incurred mycotoxins were determined using liquid chromatography–mass spectrometry (LC-MS). Within- and between-subsample variances of incurred aflatoxin B1 in peanut butter; deoxynivalenol in corn, compound feed, and wheat flour; and fumonisins in compound feed corroborated that when the particle size measurements were less than 850 µm, mycotoxins concentrations were consistent across independent test portions, which was confirmed using an analysis of variance (F-test). This study highlights the benefits of laser diffraction particle size analysis and suggests its use as a test procedure to evaluate homogeneity in new sample commodities.
For details:
Characterization of particle-size-based homogeneity and mycotoxin distribution using laser diffraction particle size analysis
Kai Zhang, Ivy Tran and Steven Tan
Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA
DOI: https://doi.org/10.3390/toxins15070450
For more information about the used Chemspeed solutions:
Contact us to learn more about this exciting article:
https://www.chemspeed.com/contact-us/