News Picture Generic

Operando XAS Study of Pt-Doped CeO2 for the Nonoxidative Conversion of Methane

May 17, 2022
Featured Article

ACS Catalysis

The methane to olefins, aromatics, and hydrogen (MTOAH) process via Pt/CeO2 catalysts poses an attractive route to improve yield and stability for the direct catalytic conversion of methane. In this study, two sets of samples, one composed of PtOx single sites on ceria and the other with additional Pt agglomerates, were prepared. Both sets of samples showed enhanced catalytic activity for the direct conversion of methane exceeding the performance of pure ceria. Pulsed reaction studies unraveled three reaction stages: reduction of the ceria support during activation, an induction phase with increasing product formation, and finally, stable running of the catalytic reactions. The reduction of ceria was confirmed by X-ray absorption spectroscopy (XAS) after conducting the MTOAH reaction. Operando X-ray absorption spectroscopy at challenging reaction temperatures of up to 975 °C in combination with theoretical simulations further evidenced an increased Pt−Ce interaction upon reaction with CH4. Analysis of the extended X-ray absorption fine structure (EXAFS) spectra proved decoration and encapsulation of the Pt particles by the CeO2/Ce2O3 support or a partial Ce−Pt alloy formation due to the strong metal−support interaction that developed under reaction conditions. Moreover, methyl radicals were detected as reaction intermediates indicating a reaction pathway through the gas-phase coupling of methyl radicals. The results indicate that apart from single-atom Pt sites reported in the literature, the observed Pt−Ce interface may have eased the activation of CH4 by forming methyl radicals and suppressed coke formation, significantly improving the catalytic performance of the ceria-based catalysts in general.

For details: 

Operando XAS Study of Pt-Doped CeO2 for the Nonoxidative Conversion of Methane

Daniel Eggart 1, Xin Huang 2, Anna Zimina 1, Jiuzhong Yang 3, Yang Pan 3, Xiulian Pan 2,
and Jan-Dierk Grunwaldt 1

{"style":"ordered","items":[{"content":"Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany","items":[]},{"content":"State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China","items":[]},{"content":"National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 South Hezuohua Road, 230029 Hefei, China","items":[]}]}

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025