News Picture Generic

Structurally Diverse Covalent Triazine-based Framework Materials for Photocatalytic Hydrogen Evolution from Water

October 8, 2019

CM Chemistry of Materials Journal

A structurally diverse family of 39 covalent triazine-based framework materials (CTFs) is synthesized by Suzuki-Miyaura polycondensation and tested as hydrogen evolution photocatalysts using a high-throughput workflow. The two best-performing CTFs are based on benzonitrile and dibenzo[b,d]thiophene sulfone linkers, respectively, with catalytic activities that are among the highest for this material class. The activities of the different CTFs are rationalized in terms of four variables: the predicted electron affinity, the predicted ionization potential, the optical gap, and the dispersibility of the CTFs particles in solution, as measured by optical transmittance. The electron affinity and dispersibility in solution are the best predictors of photocatalytic hydrogen evolution activity.

For details: Structurally Diverse Covalent Triazine-based Framework Materials for Photocatalytic Hydrogen Evolution from Water Christian

B. Meier,a Rob Clowes,a Enrico Berardo,c Kim E. Jelfs,c Martijn A. Zwijnenburg,b Reiner Sebastian Sprick,a and Andrew I. Cooper a

a Department of Chemistry and Materials Innovation Factory, 51 Oxford Street, Liverpool L7 3NY, U.K.

b Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

c Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, U.K.

For more information about Chemspeed solutions:

ISYNTH

CM Chemistry of Materials Journal

DOI: 10.1021/acs.chemmater.9b02825

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

Read more about Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage
News Picture 1 1 V2
Featured
Jan
30

Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage

VDI news / nachrichten

Up to 220 paint samples per day go through a fully automated screening in a unique testing facility at Byk in Wesel. / Bis zu 220 Lackproben pro Tag durchlaufen ein vollautomatisches Screening in einer weltweit einmaligen Pruefanlage bei Byk in Wesel.

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

© Chemspeed Technologies 2026