A Materials Acceleration Platform for Organic Laser Discovery

May 31, 2022

ChemRxiv

Conventional materials discovery is a laborious and time-consuming process that can take decades from initial conception of the material to commercialization. Recent developments in materials acceleration platforms promise to accelerate materials discovery using automation of experiments coupled with machine learning. However, most of the automation efforts in chemistry focus on synthesis and compound identification, with integrated target property characterization receiving less attention. In this work, we introduce an automated platform for the discovery of molecules as gain mediums for organic semiconductor lasers, a problem that has been challenging for conventional approaches. Our platform encompassed automated lego-like synthesis, product identification, and optical characterization that can be executed in a fully integrated end-to-end fashion. Using this workflow to screen organic laser candidates, we have discovered 8 potential candidates for organic lasers. We tested the lasing threshold of 4 molecules in thin-film devices and found 2 molecules with state-of-the-art performance. These promising results show the potential of automated synthesis and screening for accelerated materials development.

For details

A Materials Acceleration Platform for Organic Laser Discovery

Tony C Wu 1, Andrés Aguilar Granda 1, Kazuhiro Hotta 1,5, Sahar Alasvand Yazdani 2, Robert Pollice 1, Jenya Vestfrid 1, Han Hao 1, Cyrille Lavigne 1, Martin Seifrid 1, Nicholas Angello 3, Fatima Bencheikh 2, Jason E. Hein 4, Martin Burke 3, Chihaya Adachi 2, Alán Aspuru-Guzik 1

{"style":"ordered","items":[{"content":"Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada","items":[]},{"content":"Center for Organic Photonics and Electronics Research, Kyushu University, Fukuoka 819-0395, Japan","items":[]},{"content":"Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA","items":[]},{"content":"Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada","items":[]},{"content":"Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, 227-8502, Japan","items":[]}]}

ChemRxiv
https://doi.org/10.26434/chemrxiv-2022-9zm65

For more information about Chemspeed solutions:

ISYNTH

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025