News Picture Generic

Automated methods for ferrocene chemistry

April 25, 2023

Despite numerous technical advances over the last century, the field of academic organic chemistry still relies heavily on manual labor and non-systematic experiment design. Discovery and optimization of chemical reactions are subject to arbitrarily large reaction spaces, leading to an extreme amount of possible combinations of reagents and reaction conditions. The practical aspect often takes up the largest portion of available working time, reducing opportunities for conceptualization, planning and analysis. Hence, chemists often find themselves performing non-value adding activities most of the time. To eliminate this bottleneck, two strategies were explored in this work: increasing synthetic throughput using machines, and increasing information density per experiment using statistical methods. The use of a recommissioned parallel synthesizer in synergy with Design of Experiments allowed for the high-throughput generation of reproducible, meaningful data. Using interdisciplinary tools such as programming, microcontroller prototyping and 3D printing, the capabilities of the automated equipment were enhanced even more, for example through the development of automated, quantitative thin-layer chromatography. The new workflows were demonstrated in three use cases based on the molecule ferrocene. The use cases were centered around parameter investigation in complex reactions, library synthesis and the exploration of unknown reaction spaces.

Robert Gathy, Gottfried Wilhelm Leibniz University, Hannover

DOI: https://doi.org/10.15488/13045

For more information about Chemspeed solutions:

FLEX ISYNTH for Library Synthesis Small Scale

FLEX ISYNTH Library Synthesis

FLEX ISYNTH Library Synthesis with online NMR

ISYNTH REACTSCREEN

ISYNTH SPEEDCHEM

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025