News Picture Generic

Cleaning Matters!

June 1, 2020

Combinatorial Science Journal

Translation of a manual process to high throughput for research and development requires special consideration. One important and often unreported aspect is the establishment of an efficient cleaning routine. This becomes significant, as precious time and, in particular, material would be lost, that is, when low-quality high-throughput experimentation is involved. We present a fully automated cleaning routine of the challenging synthesis of cadmium selenide quantum dots. Manual, semiautomated, and fully automated cleaning protocols were executed and compared in terms of spectral similarities of the synthesized colloids. Only the fully automated protocol enabled true 24/7 operation.

For details: Cleaning Matters!

Ahmed Salaheldin Mahmoud a and Doris Segets b

a Institute of Particle Technology (LFG), Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany

b Process Technology for Electrochemical Functional Materials, Institute for Combustion and Gas Dynamics-Reactive Fluids, and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Carl-Benz-Straße 199, 47057, Duisburg, Germany

For more information about Chemspeed solutions:

AUTOPLANT PRORES

Combinatorial Science Journal
DOI: 10.1021/acscombsci.9b00122
ACS Comb. Sci. 2019, 21, 722−725
© 2019 American Chemical Society

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

Chemspeed Technologies AG

Chemspeed is a global team committed to enable automated and digitalized workflows for scientists in R&D and QC.

© Chemspeed Technologies 2025