Datenwissenschaftlich gestützte autonome Prozessoptimierung

ChemRxiv Zeitschrift

Bei der autonomen Prozessoptimierung wird ohne menschliches Eingreifen eine Reihe von vordefinierten Prozessparametern untersucht, um Reaktionen wie Reaktionsausbeute und Produktselektivität zu verbessern. Unter Verwendung von Standardkomponenten haben wir ein Closed-Loop-System entwickelt, das in der Lage ist, parallele autonome Prozessoptimierungsexperimente im Batch mit deutlich reduzierten Zykluszeiten durchzuführen. Bei der Implementierung unseres Systems in die autonome Optimierung einer Palladium-katalysierten stereoselektiven Suzuki-Miyaura-Kupplung haben wir festgestellt, dass die Definition eines Satzes sinnvoller, umfassender und unvoreingenommener Prozessparameter der kritischste Aspekt einer erfolgreichen Optimierung war. Darüber hinaus fanden wir heraus, dass kategorische Parameter wie der Phosphin-Ligand entscheidend für das Reaktionsergebnis waren. Bislang beruhte die Auswahl der kategorischen Parameter auf chemischer Intuition, was möglicherweise ein Element der Verzerrung in den Versuchsplan einbringt. Auf der Suche nach einer systematischen Methode für die Auswahl eines vielfältigen Satzes von Phosphin-Liganden, die den chemischen Raum vollständig repräsentieren, haben wir eine Strategie entwickelt, die die Analyse des Clusterns von molekularen Deskriptoren nutzt. Diese Strategie ermöglichte die erfolgreiche autonome Optimierung einer stereoselektiven Suzuki-Miyaura-Kupplung zwischen einem Vinylsulfonat und einer Arylboronsäure zur selektiven Erzeugung des E-Produktisomers in hoher Ausbeute.

Für Details:

Datenwissenschaftlich getriebene autonome Prozessoptimierung

Melodie Christensen 1,2, Lars P.E. Yunker 1, Folarin Adedeji 2, Florian Häse 3,4,5,7,9, Loïc M. Roch 3,4,5,9, Tobias Gensch 6, Gabriel dos Passos Gomes 4,5,7, Tara Zepel 1, Matthew S. Sigman 6, Alán Aspuru-Guzik 3,4,5,7,8 und Jason E. Hein 1,9

1. Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Kanada

2. Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, Vereinigte Staaten

3. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, Vereinigte Staaten

4. Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Kanada

5. Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Kanada

6. Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, Vereinigte Staaten

7. Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Kanada

8. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Kanada

9. ChemOS Sàrl, Lausanne, Vaud 1006, Schweiz

Für weitere Informationen über Chemspeed-Lösungen:

SWING RP

FLEX ISYNTH

ISYNTHESESCHIRM

ChemRxiv Zeitschrift
https://chemrxiv.org/articles/preprint/Data-science_driven_autonomous_process_optimization/13146404/1

Für Details kontaktieren Sie bitte [email protected]

November 12, 2020

Data-science driven autonomous process optimization

ChemRxiv Journal

Autonomous process optimization involves the human intervention-free exploration of a range of predefined process parameters in order to improve responses such as reaction yield and product selectivity. Utilizing off-the-shelf components, we developed a closed-loop system capable of carrying out parallel autonomous process optimization experiments in batch with significantly reduced cycle times. Upon implementation of our system in the autonomous optimization of a palladium-catalyzed stereoselective Suzuki-Miyaura coupling, we found that the definition of a set of meaningful, broad, and unbiased process parameters was the most critical aspect of a successful optimization. In addition, we found that categorical parameters such as phosphine ligand were vital to determining the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing an element of bias into the experimental design. In seeking a systematic method for the selection of a diverse set of phosphine ligands fully representative of the chemical space, we developed a strategy that leveraged computed molecular descriptor clustering analysis. This strategy allowed for the successful autonomous optimization of a stereoselective Suzuki-Miyaura coupling between a vinyl sulfonate and an arylboronic acid to selectively generate the E-product isomer in high yield.

For details:

Data-Science driven autonomous process optimization

Melodie Christensen 1,2, Lars P.E. Yunker 1, Folarin Adedeji 2, Florian Häse 3,4,5,7,9, Loïc M. Roch 3,4,5,9, Tobias Gensch 6, Gabriel dos Passos Gomes 4,5,7, Tara Zepel 1, Matthew S. Sigman 6, Alán Aspuru-Guzik 3,4,5,7,8 and Jason E. Hein 1,9

1. Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

2. Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States

3. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States

4. Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

5. Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada

6. Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States

7. Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada

8. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

9. ChemOS Sàrl, Lausanne, Vaud 1006, Switzerland

For more information about Chemspeed solutions:

SWING RP

FLEX ISYNTH

ISYNTH REACTSCREEN

ChemRxiv Journal
https://chemrxiv.org/articles/preprint/Data-science_driven_autonomous_process_optimization/13146404/1

For details please contact [email protected]

November 12, 2020