News Picture Generic

Flowsheet Simulation of Integrated Precipitation Processes

October 1, 2020

Dynamic Flowsheet Simulation of Solids Processes Journal

This work presents the fundamentals and exemplary applications of a generalized model for precipitation, aggregation and ripening processes including the formation of solid phases with two dimensions. The particle formation is governed by a widely applicable population balance approach. Solid formation processes are described via the numerically efficient Direct Quadrature Method of Moments (DQMOM), which can calculate the evolution of multiple solid phases simultaneously. The particle size distribution (PSD) is approximated by a summation of delta functions while the moment source term is approximated by a two-point quadrature. The moments to calculate the multivariate distributions are chosen carefully to represent the second order moments. Solid formation is based on the model of Haderlein et al. (2017) and is extended by a multidimensional aggregation model. Now, the influences of mixing, complex hydrochemistry and particle formation dynamics including nucleation, growth and aggregation on multiphase precipitation processes are modelled and simulated along independent dimensions with high efficiency.

For details:

Flowsheet Simulation of Integrated Precipitation Processes

Mark Michaud 1, Michael Haderlein 1, Doris Segets 2, Wolfgang Peukert 1

1 Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

2 Process Technology for Electrochemical Functional Materials, Institute for Combustion and Gas Dynamics - Reactive Fluids (IVG-RF), and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany

For more information about Chemspeed solutions:

AUTOPLANT PRORES

Dynamic Flowsheet Simulation of Solids Processes Journal
https://doi.org/10.1007/978-3-030-45168-4_8
© Springer Nature Switzerland AG 2020

For details please contact [email protected]

 

Other Recent News

Discover more news articles you might be interested in

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

Chemspeed Technologies AG

Chemspeed is a global team committed to enable automated and digitalized workflows for scientists in R&D and QC.

© Chemspeed Technologies 2025