News Picture Generic

Rapid characterization and parameter space exploration of perovskites using an automated routine

March 19, 2020

ACS Publications

Hybrid, e.g. organic inorganic, perovskites from the type methylammonium lead iodide (CH3NH3PbI3), are promising solar cell materials. However, due to the large parameter space spanned by the manifold combinations of divalent metals with organic cations and anions, an efficient approach is needed to rapidly test and categorize new promising materials. Herein, we developed a high throughput approach for the automated synthesis of perovskite layers with different precursor ratios at varying annealing temperatures. The layers were analyzed by optical absorption and photoluminescence (PL) spectroscopy as well as X-ray diffraction (XRD) and evaluated using two different procedures. The first one is a stepwise exclusion of non-performing reactant ratios and synthesis conditions by using both spectroscopic techniques, followed by a final validation of the procedure by XRD. In the second procedure, only PL results were consulted in combination with high throughput screening using design of experiments (DoE) to reduce the total number of experiments needed and compared to the manual cascade approach. Noteworthy, by simple PL screening, it was possible to identify the best ratio of perovskite to byproducts and annealing temperature. Thus, only with PL more detailed results as with the manual protocol were reached, while at the same time the effort for characterization was significantly reduced (by 60 % of the experimental time). In conclusion, our approach opens a way towards fast and efficient identification of new promising materials at different reaction and process conditions.

For details: Rapid characterization and parameter space exploration of perovskites using an automated routine

Elisabeth Reinhardt a, Ahmed M. Salaheldin a, Monica Distaso a, Doris Segets b and Wolfgang Peukert a

a Institute of Particle Technology (LFG), Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany

b Process Technology for Electrochemical Functional Materials, Institute for Combustion and Gas Dynamics – Reactive Fluids (IVG-RF), and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen (UDE), 47057 Duisburg, Germany

For more information about Chemspeed solutions:

MULTIPLANT / AUTOPLANT

ACS Publications
https://doi.org/10.1021/acscombsci.9b00068
Copyright © 2019 American Chemical Society

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026