News Picture Generic

Surfactant Adsorption on Carbonate Rocks

May 31, 2022

SPE Conference at Oman Petroleum & Energy Show

In order to improve the waterflooding efficiency, surfactants and polymers are added to the water; this process is called surfactant–polymer (SP) flooding. One of the problems for this process is high adsorption of surfactants to the rock surface and specially to carbonate rock surfaces. The focus of this work is: to quantify experimentally the adsorption of anionic surfactants to carbonate rock surfaces, obtain a qualitative understanding of the mechanisms at play and identify suitable adsorption inhibitors.

The main outcomes of the work are: the adsorption of the surfactants used can be around three times higher (mg per g of rock) on calcite than on sandstone and dolomite. Higher concentrations of divalent ions lead to higher adsorption, and the adsorption also depends on the monovalent ion concentration. Several adsorption inhibitors are identified that can reduce the adsorption substantially, of which polyacrylate showed the most significant reduction. The divalent ions are thought to form a bridge between the anionic surfactants and the charged rock surfaces. The adsorption inhibitors capture the divalent ions, reducing their concentration in solution and, consequently, the adsorption of surfactants. More work is needed on the effectiveness of this concept at higher salinities before a first-pass technical and economic evaluation on the use of adsorption reducing agents on a field-scale can be performed.

For details: 

Surfactant Adsorption on Carbonate Rocks

Paper presented at the SPE Conference at Oman Petroleum & Energy Show, Muscat, Oman, March 2022.
https://doi.org/10.2118/200079-MS

For more information about Chemspeed solutions:

SWING SP

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025