News Picture Generic

Titanium-based phenoxy-imine catalyst for selective ethylene trimerization: effect of temperature on the activity, selectivity and properties of polymeric side products

July 20, 2020

Catalysis Science & Technology

The reactivity of a phenoxy-imine-ether system (FI)TiCl3/MAO was studied toward selective ethylene trimerization. This system was shown to either trimerize or polymerize ethylene depending on the reaction temperature. Its selectivity switches from a significant production of the trimerization product, 1-hexene (85 wt%, 520–450 kg1-hexene gTi1 h−1) between 30 and 40 °C, to a moderate polyethylene formation (70–80 wt%, 60–70 kgpolyethylene gTi1 h−1) at a higher reaction temperature (T > 60 °C). Polymerization was investigated based on an original “polymer-to-catalyst” strategy aiming at identifying the active species responsible for this side reaction. Using DSC, SEC and high temperature 13C NMR analyses, polyethylenes were found to exhibit high molar masses (>105 g mol−1) and a low 1-hexene content (<1 mol%) at any temperature. Kinetic studies support that trimerization and polymerization species are generated from the catalyst precursor at 40 °C but a parallel process may occur at a higher temperature. The increase of dispersity to 4.6 at 80 °C suggests a change from single to multi-site catalysis. The poor comonomer incorporation ability of the active species is reminiscent of a molecular Ziegler–Natta or a bulky post-metallocene catalyst.

For details: Titanium-based phenoxy-imine catalyst for selective ethylene trimerization: effect of temperature on the activity, selectivity and properties of polymeric side products

Astrid Cordier a, Pierre-Alain Breuil b, Typhène Michel b ,Lionel Magna b, Hélène Olivier-Bourbigou b, Jean Raynaud a, Christophe Boisson a and Vincent Monteil a

a UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, Bat 308F, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France

b IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize, France

For more information about Chemspeed solutions:

ISYNTH POSYCAT POSY

AUTOPLANT POSY

Catalysis Science & Technology
https://doi.org/10.1039/C9CY02056J
Copyright © Catalysis Science & Technology

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

Read more about Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage
News Picture 1 1 V2
Featured
Jan
30

Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage

VDI news / nachrichten

Up to 220 paint samples per day go through a fully automated screening in a unique testing facility at Byk in Wesel. / Bis zu 220 Lackproben pro Tag durchlaufen ein vollautomatisches Screening in einer weltweit einmaligen Pruefanlage bei Byk in Wesel.

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

© Chemspeed Technologies 2026