Automated Stereocontrolled Assembly-Line Synthesis of Organic Molecules

March 22, 2022

Nature Synthesis

Automation has fuelled dramatic advances in fields such as proteomics and genomics by enabling non-experts to prepare, test and analyse complex biological molecules, including proteins and nucleic acids. However, the field of automated organic synthesis lags far behind, partly because of the complexity and variety of organic molecules. As a result, only a handful of relatively simple organic molecules, requiring a small number of synthetic steps, have been made in an automated fashion. Here we report an automated assembly-line synthesis that allows iterative formation of C(sp3)–C(sp3) bonds with high stereochemical control and reproducibility, enabling access to complex organic molecules. This was achieved on a commercially available robotic platform capable of handling air-sensitive reactants and performing low-temperature reactions, which enabled six sequenced one-carbon homologations of organoboron substrates to be performed iteratively without human intervention. Together with other automated functional group manipulations, this methodology has been exploited to rapidly build the core fragment of the natural product (+)-kalkitoxin, thus expanding the field of automated organic synthesis.

For details: 

Automated Stereocontrolled Assembly-Line Synthesis of Organic Molecules

Valerio Fasano, Rory C. Mykura, James M. Fordham, Jack J. Rogers, Borys Banecki, Adam Noble & Varinder K. Aggarwal

School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K

Nature Synthesis
https://doi.org/10.1038/s44160-022-00158-6

For more information about Chemspeed solutions:

FLEX ISYNTH

ISYNTH AI

ISYNTH REACTSCREEN

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

Read more about Automated synthesis and fragment descriptor-based machine learning for retention time prediction in supercritical fluid chromatography
News Picture 1 1 V2
Featured
Jan
6

Automated synthesis and fragment descriptor-based machine learning for retention time prediction in supercritical fluid chromatography

The integration of automated synthesis and machine learning (ML) is transforming analytical chemistry by enabling data-driven approaches to method development. Chromatographic column selection, a critical yet time-consuming step in separation science, stands to benefit substantially from such advances.

© Chemspeed Technologies 2026