News Picture Generic

Automation of synthesis in medicinal chemistry: progress and challenges

April 1, 2021

ACS Medicinal Chemistry Letters

Since the 1990s, concerted attempts have been made to improve the efficiency of medicinal chemistry synthesis tasks using automation. Although impacts have been seen in some tasks, such as small array synthesis and reaction optimization, many synthesis tasks in medicinal chemistry are still manual. As it has been shown that synthesis technology has a large effect on the properties of the compounds being tested, this review looks at recent research in automation relevant to synthesis in medicinal chemistry. A common theme has been the integration of tasks, as well as the use of increased computing power to access complex automation platforms remotely and to improve synthesis planning software. However, there has been more limited progress in modular tools for the medicinal chemist with a focus on autonomy rather than automation.

For details: 
Automation of synthesis in medicinal chemistry: progress and challenges

Elizabeth Farrant

New Path Molecular Research Ltd, Building 580, Babraham Research Campus, Cambridge CB22 3AT, U.K.

ACS Med. Chem. Lett. 2020, 11, 8, 1506-1513 
https://doi.org/10.1021/acsmedchemlett.0c00292
Copyright © 2020 American Chemical Society

For more information about Chemspeed solutions:

FLEX ISYNTH for library synthesis

ISYNTH AI

ISYNTH REACTSCREEN

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026