Discovery of inorganic material with lowest thermal conductivity ever reported

January 6, 2022

University of Liverpool

A collaborative research team, led by the University of Liverpool, has discovered a new inorganic material with the lowest thermal conductivity ever reported. This discovery paves the way for the development of new thermoelectric materials that will be critical for a sustainable society.

Reported in the journal Science, this discovery represents a breakthrough in the control of heat flow at the atomic scale, achieved by materials design. It offers fundamental new insights into the management of energy. The new understanding will accelerate the development of new materials for converting waste heat to power and for the efficient use of fuels.

Read this inspiring article

Other Recent News

Discover more news articles you might be interested in

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

Read more about Automated synthesis and fragment descriptor-based machine learning for retention time prediction in supercritical fluid chromatography
News Picture 1 1 V2
Featured
Jan
6

Automated synthesis and fragment descriptor-based machine learning for retention time prediction in supercritical fluid chromatography

The integration of automated synthesis and machine learning (ML) is transforming analytical chemistry by enabling data-driven approaches to method development. Chromatographic column selection, a critical yet time-consuming step in separation science, stands to benefit substantially from such advances.

© Chemspeed Technologies 2026