News Picture Generic

Modern Machine Learning for Tackling Inverse Problems in Chemistry: Molecular Design to Realization

April 27, 2022
Featured Article

Chemical Communications Journal

The discovery of new molecules and materials helps expand the horizons of novel and innovative real-life applications. In the pursuit of finding molecules with desired properties, chemists have traditionally relied on experimentation and recently on combinatorial methods to generate new substances often complimented by computational methods. The sheer size of the chemical space makes it infeasible to search through all possible molecules exhaustively. This calls for fast and efficient methods to navigate the chemical space to find substances with desired properties. This class of problems is referred to as inverse design problems. There is a variety of inverse problems in chemistry encompassing various subfields like drug discovery, retrosynthesis, structure identification etc. Recent developments in modern machine learning (ML) methods have shown great promise in being able to tackle problems of this kind. This has helped in making major strides in all key phases of molecule discovery ranging from in silico candidate generation to their synthesis with focus on small organic molecules. Optimization techniques like Bayesian optimization, reinforcement learning, attention-based transformers, deep generative models like variational autoencoders and generative adversarial networks form a robust arsenal of methods. This highlight summarizes the development of deep learning to tackle a wide variety of inverse design problems in chemistry towards the quest for synthesizing small organic compounds with purpose.

For details: 

Modern Machine Learning for Tackling Inverse Problems in Chemistry: Molecular Design to Realization

Bhuvanesh Sridharan, Manan Goel and U. Deva Priyakumar

Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India

Chemical Communications Journal
https://doi.org/10.1039/D1CC07035E

For more information about Chemspeed solutions:

FLEX ISYNTH

ISYNTH AI

ISYNTH REACTSCREEN

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025